1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
use core::fmt;
use std::{
    collections::{HashMap, HashSet},
    iter, mem,
};

use itertools::Itertools;

use crate::ir::{
    self, analyzer,
    function::parameter::Parameter,
    statement::{IRStatement, IsIRStatement},
    RegisterName,
};

use super::{Context, HasSize};

/// How a logical register is mapped to real hardware register or memory.
#[derive(Clone, Debug, PartialEq, Eq)]
pub enum RegisterAssign {
    /// The logical register is mapped to a hardware register.
    Register(String),
    /// The logical register is mapped to a set of hardware register.
    MultipleRegisters(Vec<String>),
    /// The logical register is actually alias to some stack space created by alloca and should only be used in `load` and `store`.
    StackRef(usize),
    /// The logical register is spilled to the stack.
    StackValue(usize),
}

impl fmt::Display for RegisterAssign {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self {
            RegisterAssign::Register(register) => write!(f, "{register}"),
            RegisterAssign::MultipleRegisters(registers) => write!(
                f,
                "{}",
                registers
                    .iter()
                    .map(|register| register.to_string())
                    .collect_vec()
                    .join(",")
            ),
            RegisterAssign::StackRef(offset) => write!(f, "alias to {offset}(sp)"),
            RegisterAssign::StackValue(offset) => write!(f, "{offset}(sp)"),
        }
    }
}

/// Assign registers for a [`ir::FunctionDefinition`].
pub fn assign_register(
    ctx: &Context,
    ir_code: &ir::FunctionDefinition,
    analyzer: &analyzer::BindedAnalyzer,
) -> (HashMap<ir::RegisterName, RegisterAssign>, usize) {
    let mut register_assign = assign_param(&ir_code.header.parameters, ctx);
    let mut current_used_stack_space = 0;
    let alloca_registers: Vec<_> = ir_code
        .iter()
        .filter_map(|it| it.try_as_alloca())
        .map(|it| it.generate_register().unwrap().0)
        .collect();
    let alloca_assign = assign_alloca(
        &alloca_registers,
        ctx,
        ir_code,
        &analyzer.register_usage(),
        &mut current_used_stack_space,
    );
    register_assign.extend(alloca_assign);
    let binding = analyzer.register_usage();
    let consider_registers = binding
        .registers()
        .iter()
        .filter(|&&it| !alloca_registers.contains(it))
        .filter(|&&it| {
            !ir_code
                .header
                .parameters
                .iter()
                .any(|param| it == &param.name)
        })
        .cloned()
        .collect_vec();
    let variables_active_blocks: HashMap<_, HashSet<_>> = consider_registers
        .iter()
        .map(|&it| {
            (
                it.clone(),
                analyzer
                    .register_usage()
                    .register_active_blocks(it, &analyzer.control_flow_graph())
                    .into_iter()
                    .collect(),
            )
        })
        .collect();
    let mut register_groups = register_groups(
        &consider_registers,
        ir_code,
        ctx,
        &analyzer.control_flow_graph(),
        &analyzer.register_usage(),
    );
    register_groups.sort_by_cached_key(|group| {
        // todo: can be register usage count
        active_block_intersection(group, &variables_active_blocks).len()
    });
    let mut next_temporary_register_id = 2;
    for group in register_groups {
        let sample_register = group.iter().next().unwrap();

        let data_type = analyzer.register_usage().get(sample_register).data_type();
        let type_bytes = (data_type.size(ctx) + 7) / 8;
        let need_registers = type_bytes / 4;
        let assigned_to_register = if next_temporary_register_id + need_registers - 1 <= 6 {
            let current_temporary_register_id = next_temporary_register_id;
            next_temporary_register_id += need_registers;
            if need_registers == 1 {
                RegisterAssign::Register(format!("t{current_temporary_register_id}"))
            } else {
                RegisterAssign::MultipleRegisters(
                    (current_temporary_register_id..current_temporary_register_id + need_registers)
                        .map(|it| format!("t{it}"))
                        .collect(),
                )
            }
        } else {
            let result = current_used_stack_space;
            current_used_stack_space += type_bytes;
            RegisterAssign::StackValue(result)
        };

        for register in group {
            register_assign.insert(register.clone(), assigned_to_register.clone());
        }
    }
    (register_assign, current_used_stack_space)
}

fn assign_param(params: &[Parameter], ctx: &Context) -> HashMap<ir::RegisterName, RegisterAssign> {
    let mut result = HashMap::new();
    let mut current_used_id = 0;
    for param in params {
        let type_bytes = (param.data_type.size(ctx) + 7) / 8;
        let need_registers = type_bytes / 4;
        let assigned_to_register = if need_registers == 1 {
            RegisterAssign::Register(format!("a{current_used_id}"))
        } else {
            RegisterAssign::MultipleRegisters(
                (current_used_id..current_used_id + need_registers)
                    .map(|it| format!("a{it}"))
                    .collect(),
            )
        };
        current_used_id += need_registers;
        result.insert(param.name.clone(), assigned_to_register);
    }
    result
}

fn assign_alloca(
    allocaed_registers: &[RegisterName],
    ctx: &Context,
    _ir_code: &ir::FunctionDefinition,
    register_usage: &analyzer::BindedRegisterUsageAnalyzer,
    current_used_stack_space: &mut usize,
) -> HashMap<ir::RegisterName, RegisterAssign> {
    let mut result = HashMap::new();
    for register in allocaed_registers {
        let data_type = register_usage
            .register_usages()
            .get(register)
            .unwrap()
            .alloca_type();
        let type_bytes = (data_type.size(ctx) + 7) / 8;
        result.insert(
            register.clone(),
            RegisterAssign::StackRef(*current_used_stack_space),
        );
        *current_used_stack_space += type_bytes;
    }
    result
}

fn active_block_intersection(
    register_group: &HashSet<RegisterName>,
    registers_active_blocks: &HashMap<ir::RegisterName, HashSet<usize>>,
) -> HashSet<usize> {
    register_group
        .iter()
        .map(|it| registers_active_blocks.get(it).unwrap())
        .fold(HashSet::new(), |mut acc, x| {
            acc.extend(x);
            acc
        })
}

fn register_groups(
    consider_registers: &[&RegisterName],
    ir_code: &ir::FunctionDefinition,
    ctx: &Context,
    control_flow_graph: &analyzer::BindedControlFlowGraph,
    register_usage: &analyzer::BindedRegisterUsageAnalyzer,
) -> Vec<HashSet<ir::RegisterName>> {
    let mut registers_active_block = HashMap::new();
    for &register in consider_registers {
        let active_blocks: HashSet<_> = register_usage
            .register_active_blocks(register, control_flow_graph)
            .into_iter()
            .collect();
        registers_active_block.insert(register.clone(), active_blocks);
    }
    // todo: collect_phied_registers result can also be mergered
    let mut register_groups = collect_phied_registers(ir_code);
    'a: for &register in consider_registers {
        for register_group in register_groups.iter() {
            if register_group.contains(register) {
                continue 'a;
            }
        }
        let data_type = register_usage.get(register).data_type();
        let type_bytes = (data_type.size(ctx) + 7) / 8;
        let need_registers = type_bytes / 4;

        if need_registers == 1 {
            let register_active_block: HashSet<_> = register_usage
                .register_active_blocks(register, control_flow_graph)
                .into_iter()
                .collect();
            for register_group in register_groups.iter_mut() {
                let register_group_active_blocks =
                    active_block_intersection(register_group, &registers_active_block);
                if register_active_block
                    .intersection(&register_group_active_blocks)
                    .count()
                    == 0
                {
                    register_group.insert(register.clone());
                    continue 'a;
                }
            }
        }
        register_groups.push(iter::once(register.clone()).collect());
    }
    register_groups
}

fn collect_phied_registers(ir_code: &ir::FunctionDefinition) -> Vec<HashSet<ir::RegisterName>> {
    let mut phied_together_registers = Vec::new();
    for statement in ir_code.iter() {
        if let IRStatement::Phi(phi) = statement {
            let mut phied_regs: HashSet<_> = phi
                .from
                .iter()
                .filter_map(|it| it.value.clone().try_into().ok())
                .collect();
            phied_regs.insert(phi.to.clone());
            let mut existed = false;
            for phied_together_register_set in &mut phied_together_registers {
                if phied_regs.intersection(phied_together_register_set).count() != 0 {
                    phied_together_register_set.extend(mem::take(&mut phied_regs));
                    existed = true;
                    break;
                }
            }
            if !existed {
                phied_together_registers.push(phied_regs);
            }
        }
    }
    phied_together_registers
}

#[cfg(test)]
mod tests {
    use crate::{
        ir::{
            analyzer::IsAnalyzer,
            function::{basic_block::BasicBlock, test_util::*},
            statement::Ret,
            FunctionDefinition,
        },
        utility::data_type::Type,
    };

    use super::*;

    #[test]
    fn test_collect_phied_registers() {
        let function_definition = FunctionDefinition {
            header: ir::FunctionHeader {
                name: "f".to_string(),
                parameters: Vec::new(),
                return_type: Type::None,
            },
            content: vec![
                BasicBlock {
                    name: Some("bb1".to_string()),
                    content: vec![
                        binop_constant("t0"),
                        binop_constant("a1"),
                        binop_constant("b0"),
                        jump("bb3"),
                    ],
                },
                BasicBlock {
                    name: Some("bb2".to_string()),
                    content: vec![
                        binop_constant("t1"),
                        binop_constant("a0"),
                        binop_constant("b1"),
                        jump("bb3"),
                    ],
                },
                BasicBlock {
                    name: Some("bb3".to_string()),
                    content: vec![
                        phi("t2", "bb1", "t0", "bb2", "t1"),
                        phi("a2", "bb1", "a1", "bb2", "a0"),
                        jump("bb5"),
                    ],
                },
                BasicBlock {
                    name: Some("bb4".to_string()),
                    content: vec![binop_constant("t3"), jump("bb5")],
                },
                BasicBlock {
                    name: Some("bb5".to_string()),
                    content: vec![
                        phi("t4", "bb3", "t2", "bb4", "t3"),
                        Ret { value: None }.into(),
                    ],
                },
            ],
        };
        let phied_together_registers = collect_phied_registers(&function_definition);
        assert_eq!(phied_together_registers.len(), 2);
        let contains_t0 = phied_together_registers
            .iter()
            .find(|it| it.contains(&RegisterName("t0".to_string())))
            .unwrap();
        assert_eq!(contains_t0.len(), 5);
        assert!(contains_t0.contains(&RegisterName("t1".to_string())));
        assert!(contains_t0.contains(&RegisterName("t2".to_string())));
        assert!(contains_t0.contains(&RegisterName("t3".to_string())));
        assert!(contains_t0.contains(&RegisterName("t4".to_string())));
        let contains_a0 = phied_together_registers
            .iter()
            .find(|it| it.contains(&RegisterName("a0".to_string())))
            .unwrap();
        assert!(contains_a0.contains(&RegisterName("a1".to_string())));
        assert!(contains_a0.contains(&RegisterName("a2".to_string())));
    }

    #[test]
    fn test_assign_register() {
        let function_definition = FunctionDefinition {
            header: ir::FunctionHeader {
                name: "f".to_string(),
                parameters: Vec::new(),
                return_type: Type::None,
            },
            content: vec![
                BasicBlock {
                    name: Some("bb0".to_string()),
                    content: vec![
                        binop_constant("m"),
                        binop_constant("n"),
                        binop_constant("u1"),
                        binop("i0", "m", "m"),
                        binop("j0", "n", "n"),
                        binop("a0", "u1", "u1"),
                        binop_constant("r"),
                        jump("bb1"),
                    ],
                },
                BasicBlock {
                    name: Some("bb1".to_string()),
                    content: vec![
                        phi("i_bb1", "bb1", "i0", "bb4", "i2"),
                        phi("a_bb1", "bb1", "a0", "bb4", "a1"),
                        binop("i1", "i_bb1", "i_bb1"),
                        binop("j1", "j0", "j0"),
                        branch("bb2", "bb3"),
                    ],
                },
                BasicBlock {
                    name: Some("bb2".to_string()),
                    content: vec![
                        binop("u2", "a_bb1", "a_bb1"),
                        binop("a1", "u2", "i1"),
                        jump("bb3"),
                    ],
                },
                BasicBlock {
                    name: Some("bb3".to_string()),
                    content: vec![
                        binop_constant("u3"),
                        binop("i2", "u3", "j1"),
                        branch("bb1", "bb4"),
                    ],
                },
                BasicBlock {
                    name: Some("bb4".to_string()),
                    content: vec![Ret {
                        value: Some(RegisterName("r".to_string()).into()),
                    }
                    .into()],
                },
            ],
        };
        let ctx = Context::default();
        let analyzer = analyzer::Analyzer::new();
        let (assign, stack_usage) = assign_register(
            &ctx,
            &function_definition,
            &analyzer.bind(&function_definition),
        );
        assert_eq!(stack_usage, 8);
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("n".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("u1".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("i0".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("j0".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("a0".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("r".to_string())]
        );

        assert_eq!(
            assign[&RegisterName("i_bb1".to_string())],
            assign[&RegisterName("i0".to_string())]
        );
        assert_eq!(
            assign[&RegisterName("i_bb1".to_string())],
            assign[&RegisterName("i2".to_string())]
        );
        assert_eq!(
            assign[&RegisterName("a_bb1".to_string())],
            assign[&RegisterName("a1".to_string())]
        );
        assert_eq!(
            assign[&RegisterName("a_bb1".to_string())],
            assign[&RegisterName("a0".to_string())]
        );
        assert_ne!(
            assign[&RegisterName("i_bb1".to_string())],
            assign[&RegisterName("a_bb1".to_string())]
        );

        assert_eq!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("i1".to_string())]
        );
        assert_eq!(
            assign[&RegisterName("m".to_string())],
            assign[&RegisterName("u3".to_string())]
        );
    }
}